自考高等數(shù)學(xué)(一)復(fù)習(xí)指導(dǎo)四
五、多元函數(shù)微積分學(xué)
(一)多元函數(shù)微分學(xué)
1.知識(shí)范圍
(1)多元函數(shù)
多元函數(shù)的定義 二元函數(shù)的幾何意義 二元函數(shù)極限與連續(xù)的概念
(2)偏導(dǎo)數(shù)與全微分
偏導(dǎo)數(shù) 全微分 二階偏導(dǎo)數(shù)
(3)復(fù)合函數(shù)的偏導(dǎo)數(shù)
(4)隱函數(shù)的偏導(dǎo)數(shù)
(5)二元函數(shù)的無條件極值與條件極值
2.要求
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會(huì)求二次函數(shù)的表達(dá)式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對(duì)計(jì)算不作要求)。
(2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法。
(4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。
(5)會(huì)求二元函數(shù)的全微分。
(6)掌握由方程 所確定的隱函數(shù) 的一階偏導(dǎo)數(shù)的計(jì)算方法。
(7)會(huì)求二元函數(shù)的無條件極值。會(huì)用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。
(二)二重積分
1.知識(shí)范圍
(1)二重積分的概念
二重積分的定義二重積分的幾何意義
(2)二重積分的性質(zhì)
(3)二重積分的計(jì)算
(4)二重積分的應(yīng)用
2.要求
(1)理解二重積分的概念及其性質(zhì)。
(2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法。
(3)會(huì)用二重積分解決簡單的應(yīng)用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。
六、無窮級(jí)數(shù)
(一)數(shù)項(xiàng)級(jí)數(shù)
1.知識(shí)范圍
(1)數(shù)項(xiàng)級(jí)數(shù)
數(shù)項(xiàng)級(jí)數(shù)的概念 級(jí)數(shù)的收斂與發(fā)散 級(jí)數(shù)的基本性質(zhì) 級(jí)數(shù)收斂的必要條件
(2)正項(xiàng)級(jí)數(shù)收斂性的判別法
比較判別法 比值判別法
(3)任意項(xiàng)級(jí)數(shù)交錯(cuò)級(jí)數(shù) 絕對(duì)收斂 條件收斂 萊布尼茨判別法
2.要求
(1)理解級(jí)數(shù)收斂、發(fā)散的概念。掌握級(jí)數(shù)收斂的必要條件,了解級(jí)數(shù)的基本性質(zhì)。
(2)掌握正項(xiàng)級(jí)數(shù)的比值判別法。會(huì)用正項(xiàng)級(jí)數(shù)的比較判別法。
(3)掌握幾何級(jí)數(shù)、調(diào)和級(jí)數(shù)與級(jí)數(shù)的收斂性。
(4)了解級(jí)數(shù)絕對(duì)收斂與條件收斂的概念,會(huì)使用萊布尼茨判別法。
(二)冪級(jí)數(shù)
1.知識(shí)范圍
(1)冪級(jí)數(shù)的概念
收斂半徑 收斂區(qū)間
(2)冪級(jí)數(shù)的基本性質(zhì)
(3)將簡單的初等函數(shù)展開為冪級(jí)數(shù)
2.要求
(1)了解冪級(jí)數(shù)的概念。
(2)了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)求導(dǎo)與逐項(xiàng)積分)。
(3)掌握求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點(diǎn))的方法。
(4)會(huì)運(yùn)用麥克勞林(Maclaurin)公式,將一些簡單的初等函數(shù)展開為冪級(jí)數(shù)。
七、常微分方程
(一)一階微分方程
1.知識(shí)范圍
(1)微分方程的概念
微分方程的定義 階 解 通解 初始條件 特解
(2)可分離變量的方程
(3)一階線性方程
2.要求
(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。
(2)掌握可分離變量方程的解法。
(3)掌握一階線性方程的解法。
(二)可降價(jià)方程
1.知識(shí)范圍
(1) 型方程
(2) 型方程
2.要求
(1)會(huì)用降階法解 型方程。
(2)會(huì)用降階法解 型方程。
(三)二階線性微分方程
1.知識(shí)范圍
(1)二階線性微分方程解的結(jié)構(gòu)
(2)二階常系數(shù)齊次線性微分方程
(3)二階常系數(shù)非齊次線性微分方程
2.要求
(1)了解二階線性微分方程解的結(jié)構(gòu)。
(2)掌握二階常系數(shù)齊次線性微分方程的解法。
(3)掌握二階常系數(shù)非齊次線性微分方程的解法。
考試形式及試卷結(jié)構(gòu)
試卷總分:150分
考試時(shí)間:150分鐘
考試方式:閉卷,筆試
試卷內(nèi)容比例:
函數(shù)、極限和連續(xù) 約15%
一元函數(shù)微分學(xué) 約25%
一元函數(shù)積分學(xué) 約20%
多元函數(shù)微積分(含向量代數(shù)與空間解析幾何) 約20%
無窮級(jí)數(shù) 約10%
常微分方程 約10%
試卷題型比例:
選擇題 約15%
填空題 約25%
解答題 約60%
試題難易比例:
容易題 約30%
中等難度題 約50%
較難題 約20%
最新資訊
- 考前必背!自學(xué)考試《中國近現(xiàn)代史綱要》論述題高頻考點(diǎn)2024-10-19
- 自考報(bào)考策略:科學(xué)搭配科目,加速畢業(yè)進(jìn)程2024-07-20
- 2025年考研考生五一假期,英語科目應(yīng)該如何復(fù)習(xí)?2024-05-03
- 備考指南!2024年4月自學(xué)考試考前要做哪些準(zhǔn)備?2024-03-31
- 考前備考沖刺!自考如何一次就過?2024-03-30
- 考點(diǎn)匯總:《中國近現(xiàn)代史綱要》論述題2024-03-25
- 備考資料:《中國近現(xiàn)代史綱要》簡答題考點(diǎn)匯總2024-03-25
- 自考可以從哪些維度進(jìn)行備考?2024-02-17
- @自考生,這里有備考技巧2024-02-17
- 自學(xué)考試備考復(fù)習(xí)方法!建議收藏2024-02-16